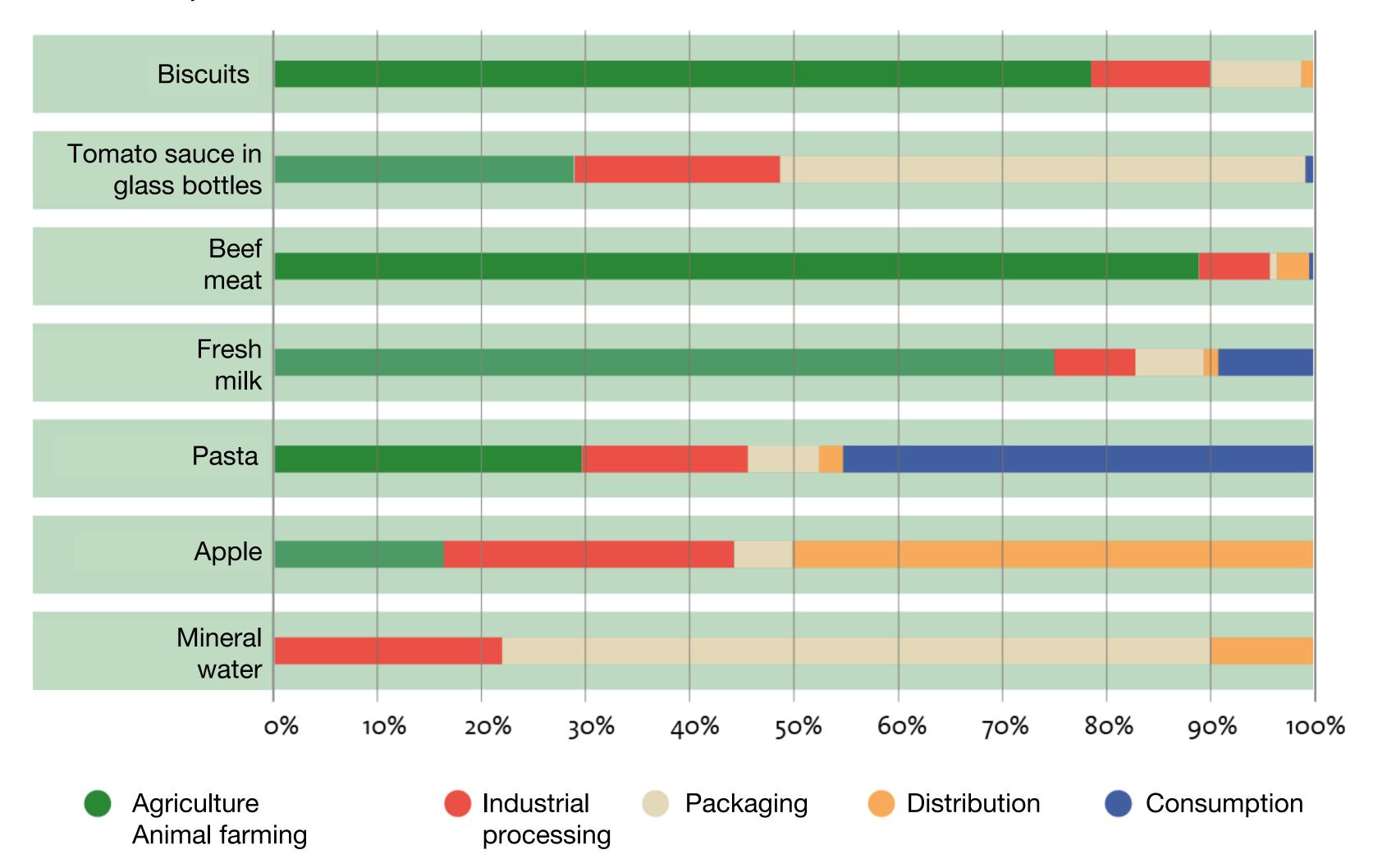
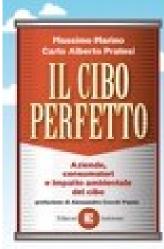


LCA HANDS-ON SESSION

DR. SILVIA MAIOLO

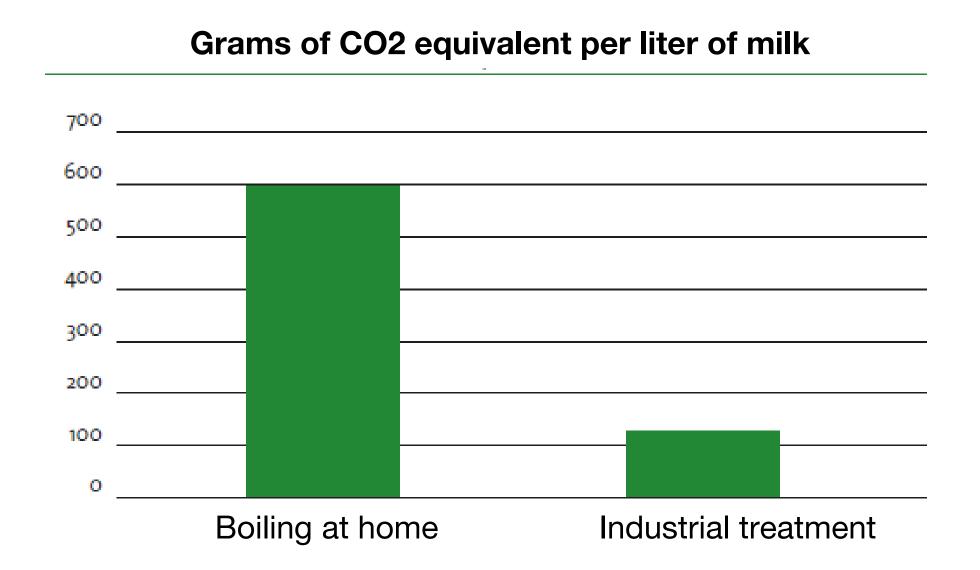

PERFECTFOOD

(PERFECT FOOD is a spin-off of LCE-Life Cycle Engineering)



LIFE CYCLE ASSESSMENT (LCA) - USAGE

To measure and compare



... But be careful to make <u>meaningful</u> comparisons. The <u>function</u> must be the same! I cannot compare 1 kg of lettuce with 1 kg of meat: they have totally different nutritional values!

For example, it is ok to compare:

SPEAKING OF FOOD....

In fact, for the latter the impact per kg of product is lower but the quantities consumed are much higher.

*CREA – Linee guida per una sana alimentazione (Italian version)

https://www.crea.gov.it/documents/59764/0/LINEE-GUIDA+DEFINITIVO.pdf/28670db4-154c-0ecc-d187-1ee9db3b1c65?t=1576850671654

SPEAKING OF FEED....

Feed4Future carbon neutral offering now available for Skretting customers

Feed & services for aquaculture

Transparency & trust >

Carbon footprint

Sustainability ~

Innovation ~

 First-to-market low impact feed now available for Italian farmers, taking Italian aquaculture to new levels of sustainability

LCA - HOW DOES IT WORK?

https://www.youtube.com/watch?v=4OiOlbxowvY&t=4s

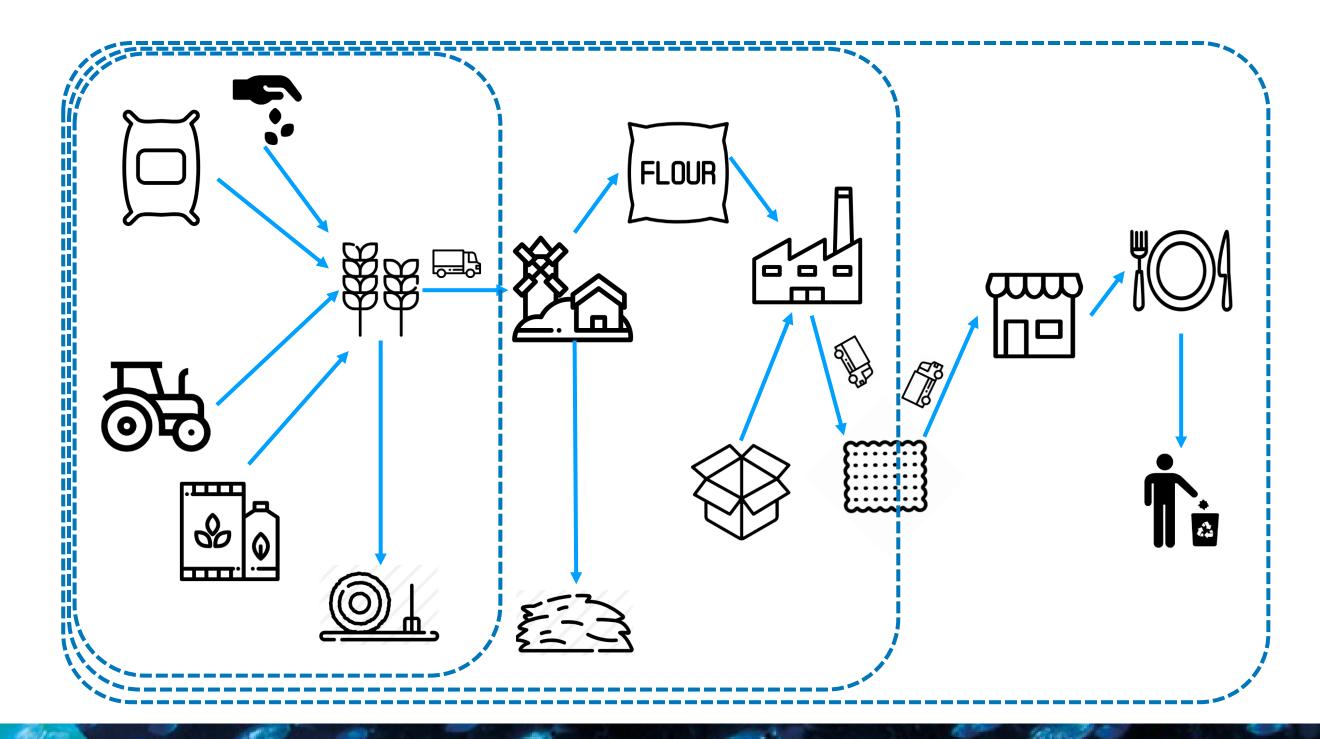
LCA - HOW DOES IT WORK?

It all depends on the **GOAL**!

Examples on Biscuits

I am asked to provide:

- On average, the Carbon Footprint (CF) of a biscuit produced in the World > very quick review of scientific references
- On average, the CF of a biscuit produced in Europe → integration of previous data with information taken from technical reports on European products *
- On average, the CF of biscuits produced by THIS specific company → integration of previous data with a quick LCA on the company (collection of primary data from the company)
- the CF of THIS biscuits, produced by THIS company, in THIS year, in THIS plant → in-depth analysis on the product,
 collecting all the primary data necessary to correctly describe that specific production process.


* For instance: https://www.environdec.com/library

Once I have chosen the goal, I can define the **SCOPE**

Keeping to use the examples on Biscuits

- what is the object to measure? → [QUANTITY] of the biscuits [NAME], produced in [YEAR] by the company [BRAND]
- How? → Define the impact assessment METHOD and the impact CATEGORIES to use
- How many pieces of the supply chain should I consider? → Define the system BOUNDARIES
- Which data should I collect? How accurate should I be? → make a detailed INVENTORY of the processes involved and, if
 possible, identify those that can certainly be overlooked (because of their negligible contribution to impact)

•

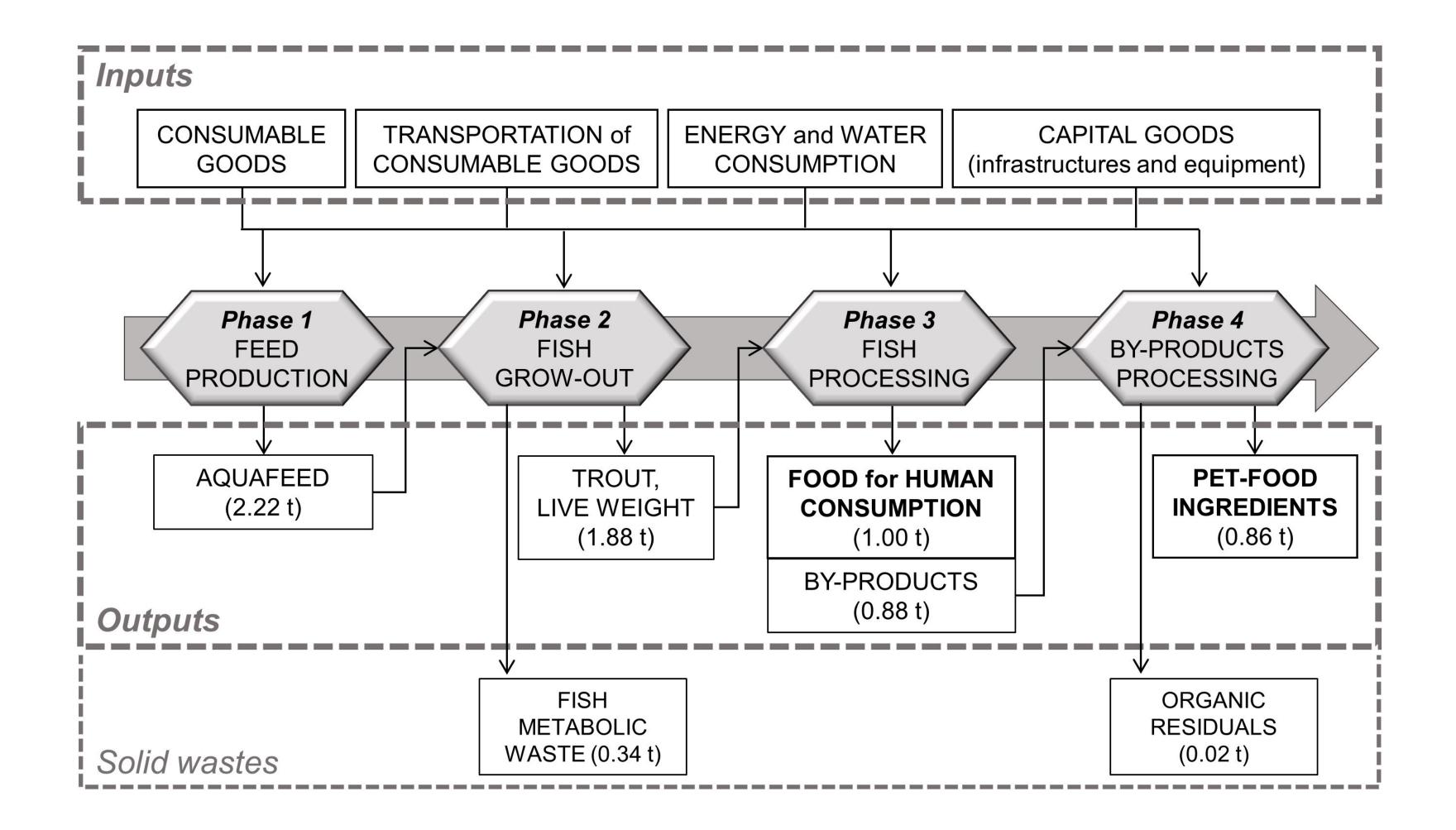
EXERCISE

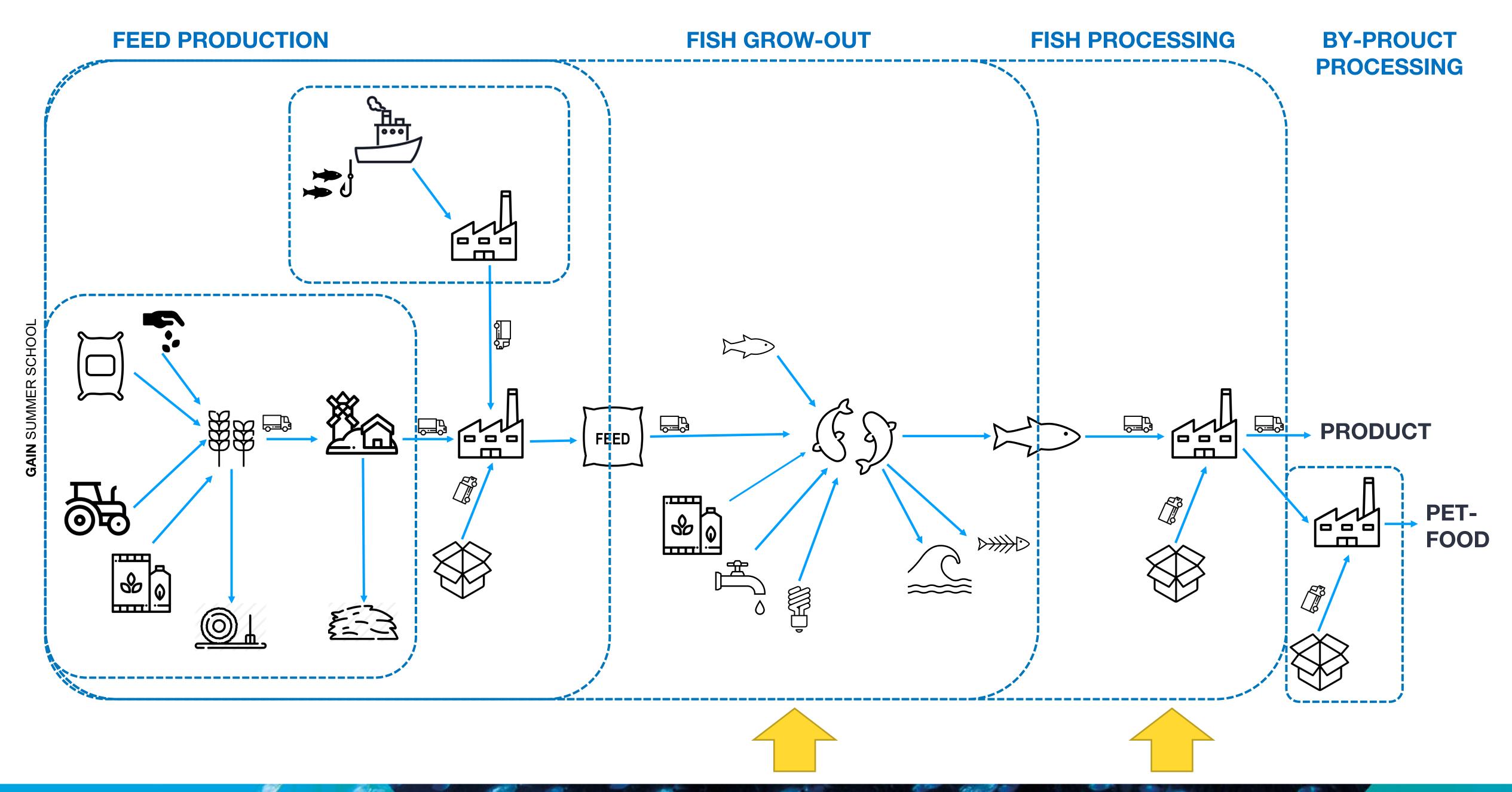
Journal of Cleaner Production

Volume 289, 20 March 2021, 125155

From feed to fork – Life Cycle Assessment on an Italian rainbow trout (*Oncorhynchus mykiss*) supply chain

Silvia Maiolo ^a △ , Andrea Alberto Forchino ^a, Filippo Faccenda ^b, Roberto Pastres ^a


Show more ∨


+ Add to Mendeley Share ₹ Cite

https://doi.org/10.1016/j.jclepro.2020.125155

Get rights and content

Mass balance

1 IMPACT ASSESSMENT of FISH GROW-OUT

	INPUTS		INVENTORY		IMPACT A	SSESSMENT
	Aquafeed	ΙΓ	1.100,00 kg			kg CO2 eq. to air
E	Road transport of inputs (aquafeed, chemicals)		294.800,00 kg km			kg CO2 eq. to air
ᅙ	Electricity (Country energy grid)		300,00 kwh			kg CO2 eq. to air
Š	Diesel		28,63 I			kg CO2 eq. to air
1 8	Water (from river)		213.725,61 m3			kg CO2 eq. to air
FSH	Dead biomass (incinerated)		226,99 kg			kg CO2 eq. to air
=						
	OUTPUTS	_		_		
	Product: trout at marketable size (live weight)		1.000,00 kg]		kg CO2 eq. to air

2 IMPACT ASSESSMENT of FISH PROCESSING

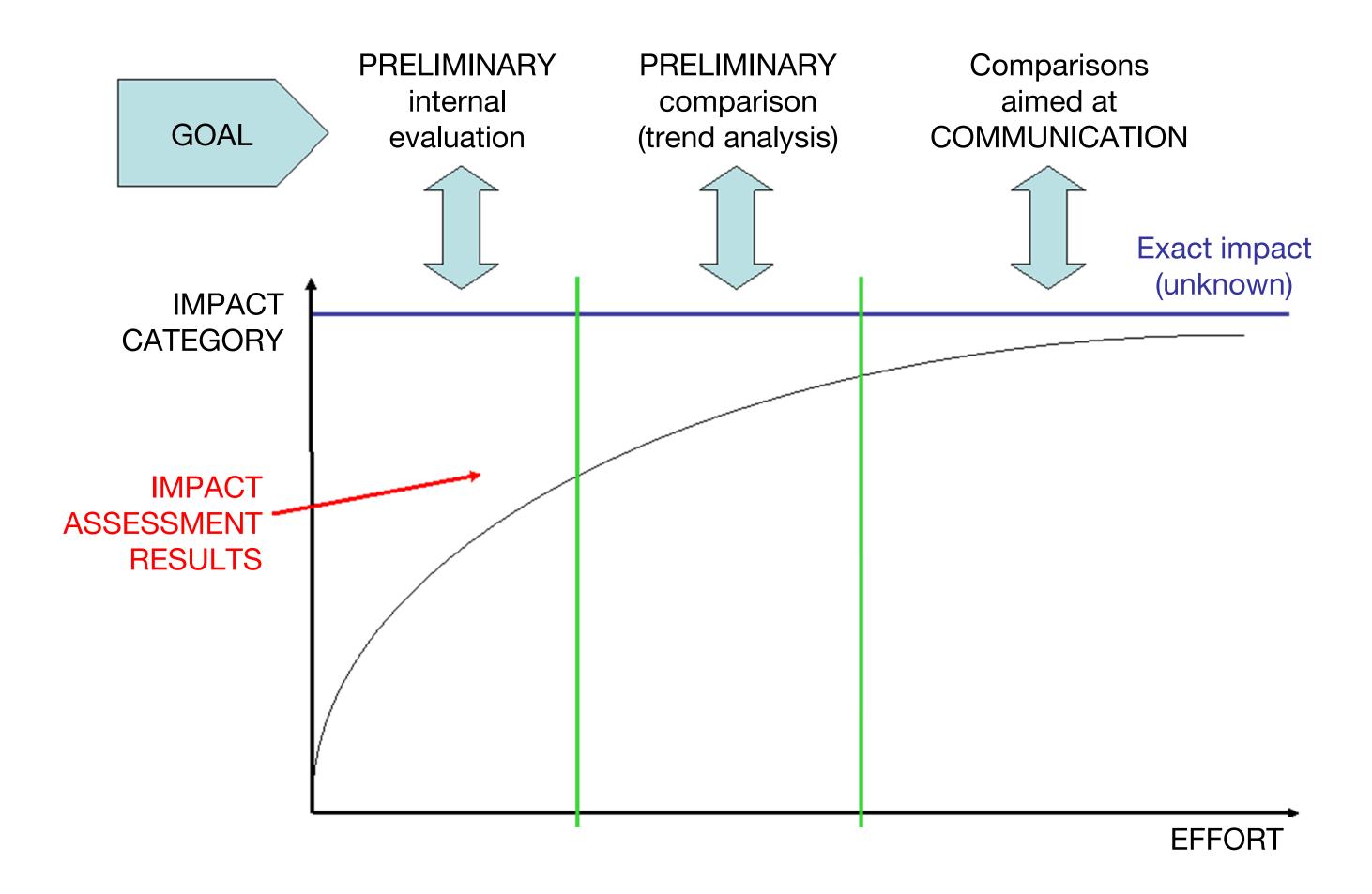
	INPUTS	INVENTORY	IMPACT AS	SSESSMENT
	Trout at marketable size (live weight)	1.877,61 kg		kg CO2 eq. to air
٥	Road transport of trout	93.880,39 kg km		kg CO2 eq. to air
SSIN	Road transport of trout Road transport of the other inputs Electricity (Country energy grid) Water (from water supply system)	24.387,69 kg km		kg CO2 eq. to air
ğ	Electricity (Country energy grid)	766,06 kwh		kg CO2 eq. to air
PRC	Water (from water supply system)	30,60 m3		kg CO2 eq. to air
FBH				
Ĭ	OUTPUTS			
	Product: food for human consumption	1.000,00 kg		kg CO2 eq. to air
	By-products: a mix of viscera, heads and frames	880.00 kg		

3 IMPACT ALLOCATION

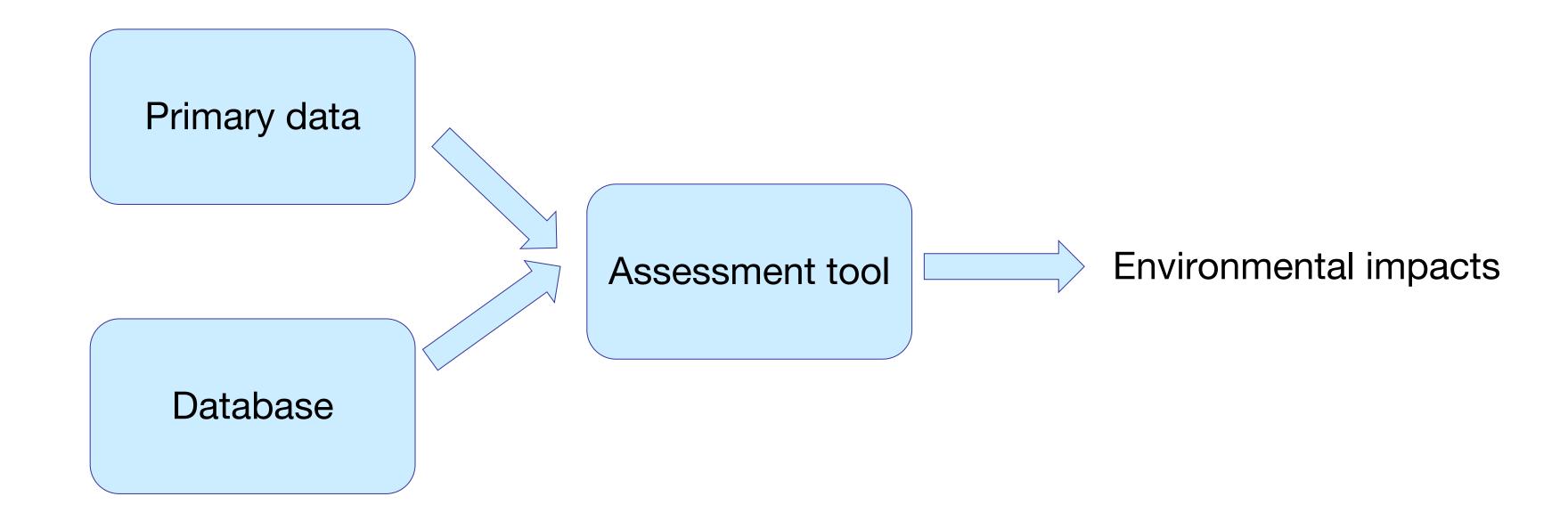
The impacts of the whole supply chain is scaled to 1'000 kg of food for human consumption plus 880 kg of by-products produced alongside How can I split the impact between the two?

Product: food for human consumption
By-products: a mix of viscera, heads and frames
Total

kg	%	€	%
1.000,0		7.000,0	
880,0		44,0	
1.880,0		7.044,0	


	ALLO	CATION	
	MASS	ECONOMIC	
			kg CO2 eq. / kg of product
L			kg CO2 eq. / kg of product
L			

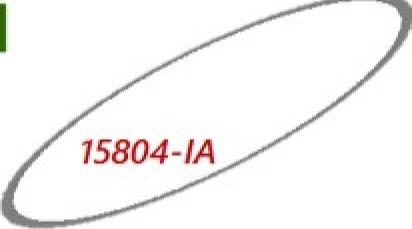
1 kg	Feed	=	2,0000 kg CO2 eq. to air
1 kg km	Transport (lorry 16-32 metric ton, EURO3)	=	0,0001 kg CO2 eq. to air
1 Kwh	Electricity (Country energy grid, low voltage)	=	0,3900 kg CO2 eq. to air
1 Kwh	Diesel, burned in agricultural machinery	=	0,2900 kg CO2 eq. to air
1 m3	Water (from river)	=	0,0000 kg CO2 eq. to air
1 m3	Tap water (European average)	=	0,2200 kg CO2 eq. to air
1 kg	treatment of biowaste, municipal incineration	=	0,0370 kg CO2 eq. to air
	Diesel, energy content		10,45 kWh/l


DATABASE

SOURCEECONOMIC VALUEBMTI S.c.p.A (2018). Wholesale prices of trout fillet (Figure D)7 €/kgmy estimate0,05 €/kg

HOW MUCH EFFORT?

A QUICK RECAP



DATABASES

Huge and internationally accepted databases, each containing thousands of processes. Some of them are free, some are not.

www.LC-Inventories.ch

Its data covers most industrial sectors, is presented transparently and well documented.

Ecoinvent was created by the non-profit association of the same name, founded by various Swiss public bodies (including the Polytechnic of Zurich, the Polytechnic of Lausanne and the Federal Center of Excellence for Agricultural Research - Agroscope). https://www.ecoinvent.org/

Agri-footprint is entirely dedicated to the agri-food sector. Given the complexity of the sector, the database offers a range of alternative models for each reference (allocation methods) and a high level of detail relating to fertilizers and the impact related to land use. The database is a project of Blonk Consultants, a leading Dutch consultancy firm in the environmental, nutrition and health sectors.

Agribalyse

https://www.agri-footprint.com/

This database is entirely dedicated to the agri-food sector. The database is a French project born from a broad partnership between public and private research institutes, coordinated by ADEME (Agency for the Environment and Energy) and INRAE (the National Institute of Agronomic Research) https://www.ademe.fr/en/agribalyse-program

The GFLI database, created by the association of the same name (Global Feed LCA Institute), is part of a project launched in 2015 in the United States. Free and transparent, it was created to provide tools to support a correct assessment of the impact of feed production.

The project (and the database) are promoted by various associations of feed producers (Europe, America, Canada and the international federation) and by international companies in the sector. https://globalfeedlca.org/gfli-database/database-and-tool/

ASSESSMENT TOOL

There are 3 main software that help us model the processes (they automatically convert them into the desired environmental impacts).

PS: openLCA is completely free, without any license cost.

Pro LCA Explorer			
Wizards	Name	Unit	Project
Wizards	Wheat grain, market mix, at regional storage/PL Mass	kg	Agri-footprint - mass allocation
	Wheat grain, market mix, at regional storage/PT Mass	kg	Agri-footprint - mass allocation
Goal and scope	Wheat grain, market mix, at regional storage/RO Mass	kg	Agri-footprint - mass allocation
Description	Wheat grain, market mix, at regional storage/UK Mass	kg	Agri-footprint - mass allocation
Libraries	Barley grain, market mix, at regional storage/IE Mass	kg	Agri-footprint 5 - mass allocation
Inventory	Barley grain, market mix, at regional storage/NL Mass	kg	Agri-footprint 5 - mass allocation
	Barley grain, market mix, at regional storage/RER Mass	kg	Agri-footprint 5 - mass allocation
Processes	Barley grain, market mix, at regional storage/US Mass	kg	Agri-footprint 5 - mass allocation
Product stages	Maize, market mix, at regional storage/DE Mass	kg	Agri-footprint 5 - mass allocation
System descriptions	Maize, market mix, at regional storage/FR Mass	kg	Agri-footprint 5 - mass allocation
Waste types	Maize, market mix, at regional storage/IE Mass	kg	Agri-footprint 5 - mass allocation
	Maize, market mix, at regional storage/IT Mass	kg	Agri-footprint 5 - mass allocation
Parameters	Maize, market mix, at regional storage/NL Mass	kg	Agri-footprint 5 - mass allocation
Impact assessment	Maize, market mix, at regional storage/PL Mass	kg	Agri-footprint 5 - mass allocation
Methods	Maize, market mix, at regional storage/RER Mass	kg	Agri-footprint 5 - mass allocation
Calculation setups	Maize, market mix, at regional storage/US Mass	kg	Agri-footprint 5 - mass allocation
	Oat grain, market mix, at regional storage/BE Mass	kg	Agri-footprint 5 - mass allocation
Interpretation	Oat grain, market mix, at regional storage/IE Mass	kg	Agri-footprint 5 - mass allocation
Interpretation	Oat grain, market mix, at regional storage/NL Mass	kg	Agri-footprint 5 - mass allocation
Document Links	Oat grain, market mix, at regional storage/RER Mass	kg	Agri-footprint 5 - mass allocation
	Oat grain, market mix, at regional storage/US Mass	kg	Agri-footprint 5 - mass allocation
General data	Rice, market mix, at regional storage/CN Mass	kg ka	Agri-footprint 5 - mass allocation
Literature references	Rice, market mix, at regional storage/NL Mass	kg ka	Agri-footprint 5 - mass allocation
Substances	Rice, market mix, at regional storage/RER Mass	kg ka	Agri-footprint 5 - mass allocation
Units	Rice, market mix, at regional storage/US Mass	kg ka	Agri-footprint 5 - mass allocation
Quantities	Rye grain, market mix, at regional storage/DE Mass Rye grain, market mix, at regional storage/NL Mass	kg	Agri-footprint 5 - mass allocation Agri-footprint 5 - mass allocation

Average production of organic RYE GRAIN for feed purposes, in Switzerland

(Database: Ecoinvent v.3)

Products		4	
	Rye grain, feed, organic (CH) production	ı	kg
Resources – Land			
	Occupation, construction site	2E-06	m^2 o
	Occupation, industrial area	5E-05	m^2 o
	Transformation, from unknown	1E-06	m^2
	Transformation, to industrial area	1E-06	M^2
Materials/fuels			
	Building, multi-storey {RER} construction	8E-06	m^3
	Rye grain, organic (GLO) market for	1E+00	kg
	Tap water {CH} market for	6E-02	kg
Electricity/heat			
	Electricity, low voltage {CH} market for		
	Heat, district or industrial, natural gas {CH} market for heat	1E-01	MJ
Emissions to air			
	Water/m3	5E-05	m^3
Waste to treatment			
	Wastewater, average {CH} treatment of, capacity 1.1E10l/year	4E-05	m^3

